The following list of topics is considered the core content for the course 110.302 Differential Equations. The current text for the course is:

Course Topics

- **Introduction (1- weeks)**
 - 1.1 Mathematical Models and Slope Fields
 - 1.2 Solutions to Some Differential Equations
 - 1.3 Classification of Differential Equations

- **First Order Differential Equations (3- weeks)**
 - 2.1 Linear Equations and Integrating Factors
 - 2.2 Separable Equations
 - 2.3 Modeling with First Order Equations
 - 2.4 Linear vs. Nonlinear Equations
 - 2.5 Autonomous Equations and Population Dynamics
 - 2.5 Exercises: Bifurcation Theory and Diagrams
 - 2.6 Exact Equations and Integrating Factors
 - 2.8 The Existence and Uniqueness Theorem (with proof)

- **Second Order Linear Equations (2 weeks)**
 - 3.1 Homogeneous equations with Constant Coefficients
 - 3.2 Solutions of Linear Homogeneous Equations: The Wronskian
 - 3.3 Complex Roots of Characteristic Equation
 - 3.4 Repeated Roots: Reduction of Order
 - 3.5 Nonhomogeneous Equations: Method of Undetermined Coefficients
 - 3.6 Variation of Parameters
 - 3.7 mechanical and Electrical Vibrations

- **Higher Order Linear Equations (1- weeks)**
 - 4.1 General Theory
 - 4.2 Homogeneous Equations with Constant Coefficients
 - 4.3 The Method of Undetermined Coefficients

- **Systems of First Order Linear Equations (2+ weeks)**
 - 7.1 Introduction
 - 7.2 Review of Matrices
 - 7.3 Linear Algebraic Equations: Independence, Eigensystems
 - 7.4 Basic Theory of First order Linear Systems
 - 7.5 Homogeneous Linear Systems with Constant Coefficients
 - 7.6 Complex Eigenvalues
 - 7.7 Fundamental Matrices
7.8 Repeated Eigenvalues

- Nonlinear Differential Equations And Stability (2 weeks)
 - 9.1 The Phase Plane: Linear Systems
 - 9.2 Autonomous Systems and Stability
 - 9.3 Locally Linear Systems
 - 9.4 Competing Species
 - 9.5 Predator-Prey Equations
 - 9.7 Periodic Solutions and Limit Cycles

- Numerical methods (1-weeks)
 - 8.1 The Euler or Tangent Line Method
 - 8.2 Improvements to the Euler Method
 - (Optional) 8.3 The Runge-Kutta Method

Optional Topics (One of these will be covered at the Instructor's discretion.)

- The Laplace Transform (1 week)
 - 6.1 Definition of the Laplace Transform
 - 6.2 Solution of Initial value Problems
 - 6.3 Step Functions
 - 6.4 Discontinuous Forcing Functions

- Series Solutions of Second Order Linear Equations (1 week)
 - 5.1 Review of Power Series
 - 5.2 Series Solution near an Ordinary Point Part I
 - 5.3 Series Solution near an Ordinary Point Part II
 - 5.4 Euler Equations: Regular Singular Points
 - 5.5 Series Solution near a Singular Point Part I